第二章 重力论文(第14/32页)

在当今地球上繁衍的最大的鸟类要数漂泊信天翁了。这种鸟的双翼展开后的幅度可达三点五米,它在飞行时可以巧借风势调整双翼的角度,使自己乘风翱翔。

风势合适时它就顺势滑翔,在无风或风速恒定的情况下则适当地扇动翅膀,因为不这样做就会输给重力或空气阻力,掉到地上去。不过,即使是这种鸟,它在起飞时也需要不停地扇动翅膀,拼命产生升力。飞上天后,假如风势不作美,它还要继续扇动翅膀,可这时的速率则会慢了许多。

振翅速率仰仗的是胸肌的力量,通过对包括漂泊信天翁在内的大大小小的鸟类的观察,人们得出了一个耐人寻味的研究成果。那就是,翅膀的长度、体重以及胸大肌所产生的振翅速率之间存在着有趣的关联性。

受制于肌肉的大小,振翅的速率总会存在瓶颈。翅膀越长、体重越大的鸟,就越无法快速地拍打翅膀。像漂泊信天翁这种大型鸟类,它的平均体重有十二公斤,即使在风速为零的条件下,它不借助助跑,仅靠拍打翅膀也好歹能飞起来。可是,这已经接近了鸟类的极限,如果一只鸟每天都需要频繁地飞上天去,那它在起飞时就必须不能这么辛苦,因此,体重十公斤就是一个上限。只有这种体重的小型鸟,它的振翅速率才会很快。

综观为数众多的鸟类观察的结果可以看到,对于利用滑行的初速度起飞、可持续进行巡航飞行的鸟类来说,它的体重上限是四十公斤。

在海面上空飞翔的鸟类很擅长借助风势进行滑翔,可它们在起飞时每秒钟的振翅次数都很多,等到了巡航时,再把这个数字降下来。

起飞时的振翅次数相当于胸大肌所产生的最大输出,而高空滑翔时所需的最低限度的振翅次数则是最小输出。实际上,所有会飞的鸟都需要在这两个值之间保持一个很大的跨度。可是,随着体重的增加,两个峰值之间的差距就会越来越小,在体重达到四十公斤时,最大值和最小值之间的差值就变成了零。体重大的鸟没办法在空中利用气流进行滑翔,即便能够升到高空,它也必须拿出和起飞时同样的劲头不停地拍打翅膀。

这一观察结果所告诉我们的是,只要是生息在地球上的鸟类,体重超过四十公斤就将无法进行长时间的巡航飞行。随着体重增加到四十五、五十甚至五十五公斤,振翅所产生的升力将不足以托起自身的重量,起飞也就无从谈起。生物都逃不出这样的宿命,如果其体形越来越大,那么肌肉的运动速度也就越来越慢。大块头的生物是无法快速地运动自己的肌肉的。这就是说,鸟类也一样,个头越大,即便竭尽全力,振翅的次数也将越来越低。

鸟类的体重一旦超过了四十公斤,即使通过拼命拍打翅膀得以一时地飞上天,它也难以在空中持续地进行长距离的飞行。如果认为这一观察报告令人信服,我们就可以得出一个结论,那就是,体重超过一百公斤的大型翼龙是不会飞的。

无论是始祖鸟、食草的雷龙,还是翼龙,它们有一点是共通的,翅膀的骨架部分由骨头组成,而骨头的材质都是磷酸钙。就这种材质而论,拿大型的翼龙来说,光是它的那对大大的翅膀,重量就得超过四十公斤了。这样一来,它的胴体和头部就必须变得很轻,可如果太轻的话,生物的机能又无法发挥出来,它也就因此丧失了存在的意义。

如果改弦更张,强行减轻翅膀部分的重量呢?吹过高空的高速强风,以及为了使沉甸甸的身子飘起来而剧烈地扇动翅膀所产生的强烈的风压会造成翅膀上的骨头不堪其负,骨架土崩瓦解。

鸟类学者们很清楚生物进行飞行的难度,而恐龙学者们却对这一点掉以轻心了。他们都成了大大小小的恐龙教派的盲目信徒,深信两亿年前的翼龙和始祖鸟的肌肉比现在的鸟类还要进化得多,它们摆脱了流体力学的理论制约而在广袤的天空中展翅翱翔。