第二章 AI复兴:深度学习+大数据=人工智能(第20/24页)
由此引发的一个哲学思辨是,如果人们只知道计算机学会了做什么,却说不清计算机在学习过程中掌握的是一种什么样的规律,那这种学习本身会不会失控?
比如,很多人由此担心,按照这样的路子发展下去,计算机会不会悄悄学到什么我们不希望它学会的知识?另外,从原理上说,如果无限增加深度学习模型的层数,那计算机的建模能力是不是就可以与真实世界的终极复杂度有一比呢?如果这个答案是肯定的,那只要有足够的数据,计算机就能学会宇宙中所有可能的知识——接下来会发生什么?大家是不是对计算机的智慧超越人类有了些许的忧虑?还好,关于深度学习到底是否有能力表达宇宙级别的复杂知识,专家们尚未有一致看法。人类至少在可见的未来还是相对安全的。
补充一点:目前,已经出现了一些可视化的工具,能够帮助我们“看见”深度学习在进行大规模运算时的“样子”。比如说,谷歌著名的深度学习框架Tensor Flow就提供了一个网页版的小工具,用人们易于理解的图示,画出了正在进行深度学习运算的整个网络的实时特征。
图28 训练深度学习模型时,整个深度神经网络的可视化状态48
图28显示了一个包含4层中间层级(隐含层)的深度神经网络针对某训练数据集进行学习时的“样子”。图中,我们可以直观地看到,网络的每个层级与下一个层级之间,数据“水流”的方向与大小。我们还可以随时在这个网页上改变深度学习框架的基本设定,从不同角度观察深度学习算法。这对我们学习和理解深度学习大有帮助。
最后,需要特别说明的是,以上对深度学习的概念阐述刻意避免了数学公式和数学论证,这种用水管网络来普及深度学习的方法只适合一般公众。对于懂数学、懂计算机科学的专业人士来说,这样的描述相当不完备也不精确。流量调节阀的比喻与深度神经网络中每个神经元相关的权重调整,在数学上并非完全等价。对水管网络的整体描述也有意忽略了深度学习算法中的代价函数、梯度下降、反向传播等重要概念。专业人士要学习深度学习,还是要从专业教程看起。
大数据:人工智能的基石
目前的深度学习主要是建立在大数据的基础上,即对大数据进行训练,并从中归纳出可以被计算机运用在类似数据上的知识或规律。那么,到底什么是大数据呢?
人们经常笼统地说,大数据就是大规模的数据。
这个说法并不准确。“大规模”只是指数据的量而言。数据量大,并不代表着数据一定有可以被深度学习算法利用的价值。例如,地球绕太阳运转的过程中,每一秒钟记录一次地球相对太阳的运动速度、位置,这样积累多年,得到的数据量不可谓不大,但是,如果只有这样的数据,其实并没有太多可以挖掘的价值,因为地球围绕太阳运转的物理规律,人们已经研究得比较清楚了,不需要由计算机再次总结出万有引力定律或广义相对论来。
那么,大数据到底是什么?大数据是如何产生的?什么样的数据才最有价值,最适合作为计算机的学习对象呢?
根据马丁·希尔伯特(Martin Hilbert)的总结49,今天我们常说的大数据其实是在2000年后,因为信息交换、信息存储、信息处理三个方面能力的大幅增长而产生的数据:
·信息交换:据估算,从1986年到2007年这20年间,地球上每天可以通过既有信息通道交换的信息数量增长了约217倍,这些信息的数字化程度,则从1986年的约20%增长到2007年的约99.9%50。在数字化信息爆炸式增长的过程里,每个参与信息交换的节点都可以在短时间内接收并存储大量数据。这是大数据得以收集和积累的重要前提条件。例如,根据对社交网站Twitter的统计,全球范围内每秒钟新增的推文条数约6000条,每分钟约350000条,每天约5亿条,每年约2000亿条。在网络带宽大幅提高之前,这个规模的信息交换是不可想象的。