第11章 神秘能量(第5/6页)

“代达罗斯计划”只是由梦想家设计的思想实验而已,该计划的终极目标是航天器用50年左右的时间飞抵最近的巴纳德星(那时候人们以为巴纳德星是一个类似太阳系的恒星系统,后来证明并不是这样)。50年的飞行时间相较6光年的距离来说不算长。从那时候开始,为了使人类的星际旅行成为可能,许多提升飞船速度的技术应运而生,其中包括提升加速度的太阳能帆和被称为“质量驱动器”的电磁弹射器。但是,不管如何优化飞船的引擎,速度总有一个上限——光速。

假设飞船的速度可以无限接近光速,那么根据狭义相对论,地球上的人需要花好几十年完成的星际旅行对于飞船中的宇航员来说只有一两年。这样的话,从时间角度说,星际旅行完全可行。事实上,飞船的速度越接近光速,其所需的能量就越大。即使使用最先进的技术,也只能让物体的运动速度达到光速的10%—20%。如果宇航员要在一生中实现在某个星体和地球间的往返,那么这个宇航员必须处于“假死”的休眠状态,但是假死本身也有问题。所以,让我们先回到科幻小说,看看超光速引擎。

超光速是科幻作品中典型的缺少解释的桥段,好像一切都是理所应当的。为了顺利地展开情节,科幻作家们用幻想来克服难以逾越的技术难关,但其在现实生活中并没有解决方案。比如,科幻作品运用类似“超空间”的概念来实现超光速,但这个概念在真实的物理世界中并没有对应物。这个词比科幻小说诞生得还早,首次出现在1867年的一篇数学论文中,用来描述超过三维的多维空间。在20世纪30年代,约翰·坎贝尔等早期通俗科幻作家把这个词用来解决星际穿越的难题。用超空间实现瞬间移动迅速被科幻作家使用并推广,读者对此也习以为常,在不理解原理的情况下认为这是可行的。广义地说,超空间的意思就是这个世界上存在三维以外的维度,是生活在三维空间里的我们没有直接体验过的维度。在真实世界中,弦理论中的九维空间也提到了这个特殊的物理概念。但这并不能把现实世界和科幻作品联系在一起,如果现实中真的存在多维空间,那么这些空间应该会以比较小的形态出现,我们也会观察到这些空间。

这使得弦理论不足以作为超空间的理论基础,因为超空间旅行需要多维空间以某种方式为我们的世界提供一个快捷通道,这个快捷通道可以通过弯曲的时空将两点相连。小型的扭曲时空是不能实现这一点的。科幻作品中常见的超光速用到了一些真实的物理概念,比如《超时空接触》中的虫洞(爱因斯坦–罗森桥),但它也是有问题的。虫洞只是一个理论概念,是广义相对论提出的宇宙中由扭曲时空产生的连接两个不同时空的狭窄隧道,要在现实世界中使用这个技术难度极大。

虽然虫洞这个概念非常吸引人,但没有人真正见过它。我们不知道怎么建造一个虫洞,也不知道如何把虫洞置于正确的地方。开启虫洞的唯一方法是使用负能量。诚然,负能量是存在的,但其规模微乎其微,几乎不能被有效地利用。如果负能量可以被操控使用,那么它完全可以应用于比虫洞更切实际的主题。比如,《星际迷航》中“企业”号飞船上装载的引擎——曲速引擎。这并不是某个科幻作家凭空想象出来的概念,它的原创者是美国国家航空航天局。

以上言论需要更多的解释和延展。美国国家航空航天局的大多数人对曲速引擎持怀疑态度,但是美国国家航空航天局总是鼓励员工追求卓越、不断创新。他们的员工哈罗德·怀特就是一位创新奇才。怀特提议,可以设计出“扭曲时空”来推进火箭。这个概念的原创者是曾经效力于威尔士大学卡迪夫学院的墨西哥理论物理学家米格尔·阿尔库别雷。